CADA - Interdiffusion

D - Solution to the model

The following rescaled system of partial differential equations with initial and boundary conditions
describing problem of interdiffusion (obtained after rescaling - see section C):
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The problem given by eqns. (1)-(2) will be solved numerically using method of lines (variant of finite
difference method — see Category: Numerical methods.

Below we display the general arrangement of the nodes. It can be viewed as two intertwined grids:

one, with nodes denoted by X,, for computing the values of J =J(x,t), second, with nodes
denoted by Y, , for computing the values of C, =C;(Y,t). In both cases X,y €[0,d]. The space step

is not assumed to be uniform and we have h, =X, —X,
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We start from the basic equations

oac o)

E & (I=1,...,|’) (3)

which subsequently will be discretized at the nodes X =Y, for eq. (3)

oc;

o
at

Y (4)

X=Yy X=Yx

Recalling that J; =J;| _ =J,(X,,t) and ¢ =¢;(Y,,t) we use the central finite difference for the

X=X

approximation of the flux space derivative for the inner nods



CADA - Interdiffusion

S5 (k=1...,N) (5)

At the left and right boundary the fluxes are approximated using the following right and left finite
difference respectively

a3, _ —h(2h,+h)I+(hy+h)? 3} —hiJ?
ox | hoh,(hy +h,)
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X=Yo

A MR (b, hy YN by (B + 2 ) o)
OX X=Yhn h,h,(h, +h,)
ac, dc o
Because — =—— we can write a discretized form of egs. (3) as
o)., dt

dt hohy (he +hy)

dc'o _ _hl(2h0 + hl)"]io + (ho + hl)z‘]il — hoz‘]i2

k K k-1

do N =d o1 Ni=1.n)

dt h

de;" ™ —_ hadi” =y, +hyy)? 30 +hy L (hy +20y )3
dt hohy (hy + 1)

oc.
To get the value Jik =J.(X,,t), we have to compute O_I(Xk ,t). This is done by the formula,
X

presented below, that is valid for any sufficiently regular function f = f(X). Suppose that we have

tree points & <&, <&, on thereal line
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hy h,
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Then the first derivative at & =&, may be expressed as follow

f,(fz) — hl2 f (653)_h22 f (él)"'(hzz _hlz) f (52) 4r
hh, (h +h,) (8)
where r =0(hh,)

ac.
After applying this formula to 6_I(Xk ,t) with the nodes X =Y, ,, X =X,, X =Y, we must get rid of
X

the value C, (X, ,t), because the final form of ODEs must contain only functions ¢/ (t) = ¢, (y,,t).

One of the possibility is to express it in terms of C, (Y, ,t), C.(V,,,,t) only, by taking a weighted linear

approximation

t) = h& (Yo t) +h (Ve t) hkcik + hk—lcikﬂ

X h . +h h . +h
k—1+k k—l+k

(9)

Combining (8) (applied to C;) together with (9) yields the final approximation of the concentration

gradient

ac | _ 2 he,¢™ —hécl + (h —h )(he +h¢™)
OX heih (hey +hy)

X=X

(10)

Now, the whole flux may be discretized and written as
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hk2—1cik+1 — hkzcik + (hk — hk—l)(hkcik + hk—lcikﬂ) +
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hk -1 + h J hk—lhk (hk—l + hk)

The ODEs in the single-index notation
This part deals with expressing the above discretised system by using only one index instead
two indices. This may be useful when one applies a numerical subroutine which usually

assumes ODEs written with one index notation as follows

yl’ = fl(t! y11'--l yn)|

Yo =f .ty Y,

cyli yy = f,(t,y,....y) dlal =1

In order to rewrite the above system in one-index form we apply the translation

I(i,k) =1 =(i—1)(N + 2) + k +1and use the simple relations

= (i ~1)(N +2)+k+1©{k = (I=Dymod (N +2),
i=1+(-1)div (N +2). (12)

where i=1,...,r+1,k=0,...,N+2.

The single index | =1,...,(N +2)r is connected with concentrations and electric field as

follows

1=1,2,....,(N +2)r. (13)

Further we will write

k =k(1)=(-1)mod (N +2) and i, =i(l) =1+ (I -1) div (N +2). (14)
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For the whole system the single index | of the components which are adjacent to the
boundary has the property:

e next to the left boundary: (I —1)mod (N +2) =0,
e before the right boundary: | mod (N +2) =0.

Now the ODEs system may be written as follows.

Theindex | runs over the range 1,2,...,(N + 2)r.

(1) Fornodes X,,...Xy ,i.e. (I-1)modN -1-0 and ImodN -1=0.

dc r
l
at Z(Cl,j (Wa iy -1Ci ik F WarCigikay + WakaysaCiikayn) ~
i

j
__C (W1,k(|)-1C|-1 WG+ Wl,k(l)+lCI+1)(W1,k(l)—lcl(j,k(l)—l) Wiy Gigkay Wl,k(l)+lcl(j,k(l)+1) -

mix

mix

1 0
+_C (Wl,k(l)—lcl—l W yG +Wl,k(|)+lcl+1)kj,L(Cj _Cj,L)

C
where C, ; = (9, ; —C—')Dj.

1
mix

(2) Forthe node X, i.e. (I-1)mod(N -1)=0.

dCI r 0
E = Z(Cl,j (Wz,ocj + W2,1CI(j,k(I)) + W2,2cl(j,k(|)+1)) -
j=1

D.
j 0 0
- (Wl,OCI(i,O) +W,C + Wl,2C|+1)(W1,OCI(j,0) WGy T+ Wl,ZCI(j,k(I)+1) -

mix

1 0 0
+C_(W1,0Ci(l) + W, G +Wl,2CI+1)kj,L(Cj _Cj,L)j

mix

where ¢’ =bv(left,i).

(3) Forthe node X ,, i.e. ImodN —-1=0.
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dc J
L N
a Z(Cu (Wo,n 2Cigikeqy-ny + WanaCigikay T Wan € ) —
=
j N N
. (W 2y Wy 1€ W Gy YWy o8y T WanaCigjieay T Wan €y ) —
mix

mix

1 N 0
+C_(W1,N—2CI—1 +W1,N—1CI +W1,Nci(|))kj,L(Cj _Cj,L)

where ¢ =bv(right, i).
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