CADA — Numerical methods

H - The Radau IIA method for ODE integration

The method of lines translates an evolutionary PDE into a large system of ODEs. As we mentioned
before this system exhibits stiffness which in consequence requires specialized numerical algorithms.
Our simulations proved that the family of the Radau methods is a good choice.

The name “Radau methods” is usually applied to the family of fully implicit Runge-Kutta methods
which possess good stability properties. Generally, an RK method has the form

U, =U, +AtY bK;, n=012,... (1)

i=1

where

K, = f(t, +cAtu, +AtY a,K)), i=1...,s (2)

=

The coefficients {a; },{¢;}and {b, } fully characterize the method. If the coefficient a, # 0, the

method is implicit (so we must solve in general nonlinear system of algebraic equations in order to
accomplish the next time step). There are some additional relations between coefficients which must
hold to ensure the theoretical convergence of such method

S

Db =1>a,=c i=1..s (3)

i=1 i=1

For S > 2 these relations do not determine the coefficients, so we have really a big family of Runge-
Kutta methods. The Radau methods is just a subfamily of implicit Runge-Kutta methods. The method
we use, implemented by Hairer-Wanner in a FORTRAN subroutine called RADAUS, is defined by
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Remarks on the implementation
The main task is to solve the system of algebraic equations

g =U,+AtY a, f(t,+chg,) fori=1..s. (5)

=1

Upon introducing z; = ¢§; —U, we have

7z, =AtY a,f(t,+chu,+z,) fori=1..,s. (6)

=L

To advance to the next time step t, + At we use

U, =U, +AtY a; f(t,+c;h,uy+2)), (7)

j=1

and in a such form it would require S additional function evaluations. This can be avoided, if the

matrix A=[a;] is nonsingular. In matrix notation the eq. (6) can be written as z = AtAF(z), where

F(z) = (f(t, +¢;At, Uy +2;)) ;. - Now the formula (7) can be expressed as

S
U =U,+.d;z (8)
=

where d =(d,,...,d,)" = (A")™b. In addition there are two more advantages of such

reformulation (see [1], p. 119).

Theoretical analysis (e.g. the paper of Linger & Willoughby, 1970) and numerical tests strongly
suggest that the Newtown’s method, instead of the simple fixed-point iteration, should be applied to
solve the system (6).

[1]Ernst Hairer, Gerhard Wanner, Solving Ordinary Differential Equations Il. Stiff and Differential-Algebraic
Problems. Springer Series in Comput. Mathematics, Vol. 14, Springer-Verlag 1991, Second revised edition 1996.
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The standard Newton’s method needs for each iteration the solution of a linear system with matrix

[5ij —Ata; D, f(t, + C,At, U, + Zj)]ijzl,...,s (9)

In order to simplify this, we can use the Jacobian J = Dy f (t,,u,) for all Newton’s iterations. Thus

the simplified Newton iterations become

(I —AtA® J)AZM = 7™M L AtA® IF (2™)
Z[k+l] — Z[k] +AZ[k]

(10)

where ZM = (2. 2!, F(Z™M) = (f (t, + c At u, +2),..., f(t, +c.Atu, +21).
Remarks

e FEach iteration requires S evaluations of f and the solution of a ns-dimensional linear

system.
e The matrix is the same for all iteration in one step.
e The LU decomposition while solving the linear system (10) is most frequently used.

Stopping Criteria for Iterations
If convergence is linear with the constant rate ¢ €]0,1] we have

1AZ" Y |I< 81| AZM . (11)

From this we derive

T
1z%9-z IISEIIAZ“‘] | (12)

where Z" is the exact solution.

The convergence rate & can be estimated by the quantities

8 | AZYM 1| AZY || k>1. (13)
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Thus because 9, = 4, the error can be estimated as follows

+ * 9
1z -z IISﬁIIAZ[” | (14)

k

yielding the strategy:

7 IAZY < x-Tol — (with 5, =9 /11— 8). (15)

where Tol is the local truncation error and x is an additional parameter. The implementation uses k&
around 107 or 1072,

The adaptive time step strategy is also applied in case we cannot reach a desired accuracy of (15) in a
reasonably number of steps (in the implementation “reasonably” means no more than 10). In such
case the substitution At=At/2 is used and computations are restarted with this smaller step size.

The Linear System

Step Size Selection
To control adaptively the time step size the implementation uses an embedded pair of methods. The
auxiliary lower order method has the form

EEN
(0, = Uy + Aty, f (ty,Up) + ALY b f (t, +CAL, g;) (16)
i=1
where (,,0,,d; are the values obtained from the RADAU IIA method. Then the difference

3.
0, —u, = oAt (t,,U,) + ALY (b —b)) f (t, + CAL, g;) (17)

i=1

serves as the error estimation. This also can be written as follows (see eq. (8))
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U, —U, = 7, Atf (t,,U,) + €2, +€,Z, +€,Z,. (18)

But for stiff equations this formula is not sufficient so the expression proposed by Shampine is used

err = (1 —Aty,J) (4, —u,). (19)

Further, to avoid the “hump” phenomenon (see [1], Sect. IV.7), in the first iteration step after every
rejected time step for which || err ||>1 we use, instead of error estimate (19), the following

expression for step prediction

err = (I — Aty,J) (7, Atf (t,, U, +err) +ez, +e,2, +€,2,) (20)
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